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ABSTRACT

Five sets of 48-h, 10-member, convection-allowing ensemble (CAE) forecasts with 3-km horizontal grid

spacing were systematically evaluated over the conterminous United States with a focus on precipitation across

31 cases. The various CAEs solely differed by their initial condition perturbations (ICPs) and central initial

states. CAEs initially centered about deterministic Global Forecast System (GFS) analyses were unequivocally

better than those initially centered about ensemble mean analyses produced by a limited-area single-physics,

single-dynamics 15-km continuously cycling ensemble Kalman filter (EnKF), strongly suggesting relative su-

periority of the GFS analyses. Additionally, CAEs with flow-dependent ICPs derived from either the EnKF or

multimodel 3-h forecasts from the Short-Range Ensemble Forecast (SREF) system had higher fractions skill

scores than CAEs with randomly generated mesoscale ICPs. Conversely, due to insufficient spread, CAEs with

EnKF ICPs had worse reliability, discrimination, and dispersion than those with random and SREF ICPs.

However,members in theCAEwith SREF ICPs undesirably clustered by dynamic core represented in the ICPs,

and CAEs with random ICPs had poor spinup characteristics. Collectively, these results indicate that continu-

ously cycled EnKF mean analyses were suboptimal for CAE initialization purposes and suggest that further

work to improve limited-area continuously cycling EnKFs over large regional domains is warranted.

Additionally, the deleterious aspects of using both multimodel and random ICPs suggest efforts toward im-

proving spread in CAEs with single-physics, single-dynamics, flow-dependent ICPs should continue.

1. Introduction

Convection-allowing ensembles (CAEs) provide useful

and valuable forecast guidance (e.g., Clark et al.

2012; Evans et al. 2014; Schwartz et al. 2019) and are

now operational at many meteorological offices (e.g.,

Gebhardt et al. 2011; Peralta et al. 2012; Hagelin

et al. 2017; Raynaud and Bouttier 2017; Jirak et al.

2018; Klasa et al. 2018). Nonetheless, uncertainty

remains about optimal CAE design, especially regard-

ing initial condition perturbations (ICPs),1 which are

needed to generate forecast diversity before perturba-

tions from lateral boundary conditions (LBCs) and

model error representation schemes engender substan-

tial spread (e.g., Hohenegger et al. 2008; Vié et al. 2011;

Peralta et al. 2012; Kühnlein et al. 2014; Romine et al.

2014; Zhang 2019).

There are several broad approaches for producing

CAE ICPs. One simple method is to add random noise

to a deterministic field (e.g., Hohenegger and Schär
2007; Johnson et al. 2014; Raynaud and Bouttier 2016;

hereafter RB16). While this operation is trivial, ran-

domly produced ICPs are not flow dependent, a poten-

tial limitation.

Another straightforward method for initial condition

(IC) generation is to downscale preexisting coarse-

resolution analyses or short-term forecasts from either

an ensemble or collection of deterministic numerical

weather prediction (NWP) models directly onto the CAE

grid (Jones and Stensrud 2012; Duc et al. 2013; Romine

et al. 2014; Schumacher and Clark 2014; Schwartz et al.

2015a,b, 2019; Tennant 2015; Clark 2017; Schellander-

Gorgas et al. 2017; Jirak et al. 2018;Klasa et al. 2018;Cafaro

et al. 2019; Porson et al. 2019). Downscaling means the

ICPs directly reflect the NWPmodel and data assimilation

(DA) system underlying the coarse-resolution fields, and

finescale details are not introduced into the CAE ICs.Corresponding author: Craig Schwartz, schwartz@ucar.edu

1Herein, ‘‘perturbation’’ is defined as the difference between an

individual ensemble member and a reference field, which is usually

the ensemble mean.
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Alternatively, ICPs derived from coarser-resolution

models can be recentered about a deterministic anal-

ysis of one’s choosing, which could either be inter-

polated onto or produced directly on the CAE grid (Xue

et al. 2007; Kong et al. 2008, 2009; Peralta et al. 2012;

Kühnlein et al. 2014; Tennant 2015; RB16; Raynaud

and Bouttier 2017; Hagelin et al. 2017). Thus, while

these ICPs again reflect the external modeling system,

the initial ensemble center could possess finescale

structures that are imparted to individual ensemble

members during recentering. However, recentering can

be complex; European studies examining how re-

centering affects ensemble forecasts revealed mixed

results (e.g., Lang et al. 2015; Tennant 2015; RB16), and

recentering analysis ensembles about deterministic

‘‘hybrid’’ variational-ensemble analyses within DA

contexts yields little impact (e.g., Clayton et al. 2013;

Wang et al. 2013; Pan et al. 2014; Schwartz et al. 2015c).

Still another approach for generating CAE ICPs is to

produce them directly on the CAE grid with an en-

semble DA system, which provides flow-dependent

ICPs fully consistent with the CAE forecast model

that span all possible resolvable scales (e.g., Vié et al.

2011; Bouttier et al. 2012; Harnisch and Keil 2015;

Wheatley et al. 2015; Johnson and Wang 2016; RB16;

Keresturi et al. 2019). While this method is more so-

phisticated than and theoretically preferable to others,

convective-scale DA is still evolving and computation-

ally expensive.

Within each of these overarching methods, there are

many options for producing CAE ICs: random noise can

be generated in a variety of manners with different

correlation length scales; coarse-resolution analyses are

available from numerous NWP models with varied res-

olutions and DAmethods; perturbations can be derived

from and centered about many potential datasets; and

myriad high-resolution DA implementations are possi-

ble. Moreover, these various approaches can be com-

bined to produce CAE ICPs (e.g., Zhang 2018, 2019).

Yet, despite the multitude of options for CAE ICP

generation, few studies have rigorously examined CAE

forecast sensitivity to ICPs. Perhaps the most systematic

study devoted to CAE ICPs was RB16, who found ICPs

provided from both correlated random noise and a high-

resolution, perturbed-observation variational DA system

led to better CAE forecasts than ICPs from downscaled

global ensemble analyses through 9–12h.However, RB16

reported negligible sensitivity to ICP method for 12–36-h

forecasts, presumably because LBC information quickly

swept through their fairly small France-centered compu-

tational domain, and it is unclear how RB16’s results may

translate to larger domains that are less prone to LBC

impacts (e.g., Warner et al. 1997; Romine et al. 2014;

Schumacher and Clark 2014), where sensitivity to ICPs

may be detectable beyond 9–12h.

In addition, several studies have assessed the suit-

ability of limited-area ensemble Kalman filters (EnKFs;

Evensen 1994; Houtekamer and Zhang 2016) for CAE

initialization in case-study or idealized frameworks,

although some did not fully isolate ICP impacts.

For example, Harnisch and Keil (2015) suggested a

convective-scale EnKF could initialize better CAE

forecasts than downscaled ICPs for three forecasts, but

forecast differences were not fully attributable to ICPs

given discrepancies regarding DA and LBCs between

variousCAEs. Similarly, although Schumacher andClark

(2014) suggested an EnKF-initialized CAE sometimes

outperformed a CAE initialized by downscaling and re-

centering non-EnKF perturbations about a determinis-

tic analysis for a multiday heavy rainfall case, many

differences between the CAEs also limited attribution

to ICPs. Conversely, Johnson and Wang (2016) per-

formed an idealized, controlled experiment and noted

ICPs produced directly on a convection-allowing grid

via EnKF DA led to modestly better 9-h precipitation

forecasts than when ICPs were provided by coarser-

resolution EnKF analyses, but their ‘‘perfect model’’

framework may not apply to many real-data situations.

More broadly, limited-area EnKFs are attractive

for CAE initialization, as EnKFs seamlessly meld

ensemble DA and forecasting in a single step to

produce analysis ensembles that can initialize CAEs.

Furthermore, continuously cycling EnKFs have be-

come increasingly popular for real-time CAE forecast

applications. For instance, between 2015 and 2017, the

National Center for Atmospheric Research (NCAR)

produced experimental, real-time CAE forecasts over

the conterminous United States (CONUS) initialized

with a continuously cycling EnKF (Schwartz et al.

2015b, 2019), and in 2017, Germany began using a

continuously cycling EnKF to initialize their opera-

tional CAE (Schraff et al. 2016; Pantillon et al. 2018).

However, using continuously cycling limited-area

EnKFs to initialize CAEs has risks, as biases can accu-

mulate through assimilation cycles and degrade forecasts

(e.g., Hsiao et al. 2012; Torn and Davis 2012; Romine

et al. 2013; Wong et al. 2020); EnKFs over large domains

like the CONUS might be more susceptible to this

problem thanEnKFs over comparatively small European

domains where prominent LBC influences may mitigate

bias accumulation. Therefore, although NCAR’s ex-

perimental CAE forecasts were credible and widely

adopted by both researchers and forecasters (Schwartz

et al. 2019), it remains unclear whether large-domain,

limited-area, continuously cycling EnKFs are optimal for

producing CAE ICPs. Furthermore, objective assessments
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of systematic, controlled experiments designed to iso-

late impacts of ICPs on real-data CAE forecasts over the

CONUS have yet to be reported, although subjective

evaluations of two CAEs differing solely by ICPs per-

formedduringNOAA’s 2019HazardousWeatherTestbed

Spring Forecasting Experiment suggested ICPs had little

impact on severe weather forecasts (Clark et al. 2019).

Accordingly, to further understanding about ICP

methods for CAEs, including EnKF-based approaches,

this study systematically examined 31 48-h forecasts

from several 10-member CAEs over the CONUS,

where many of the CAEs differed solely by their ICPs.

In addition, to explore the impacts of recentering

ICPs, other CAEs differed solely by their central

initial states. Thus, differences between various CAE

forecasts were fully attributable to either ICPs or

central initial state, providing insight about CAE

initialization and design that has implications for de-

velopment of future operational CAEs, such as those

at NOAA under the Unified Forecast System (UFS)

framework.

2. Model configurations and ICP strategies

a. Model configurations

All CAEs employed forecast model configurations

similar to those used in NCAR’s real-time CAE project

(Schwartz et al. 2015b, 2019). Specifically, 48-h fore-

casts were produced by version 3.6.1 of the Advanced

Research Weather Research and Forecasting (WRF)

Model (Skamarock et al. 2008; Powers et al. 2017) over a

two-way nested domain spanning the CONUS and ad-

jacent areas (Fig. 1a). The horizontal grid spacing was

15km in the outer domain and 3km in the nest, where

time steps were 75 and 18.75 s, respectively. Both do-

mains had 40 vertical levels, a 50-hPa top, and used

common physical parameterizations (Table 1), except

no cumulus parameterization was employed on the 3-km

grid. All ensemble members used identical physics and

dynamics.

During the 48-h integrations, LBCs were produced

for each ensemble member by perturbing forecasts

from NCEP’s Global Forecast System (GFS) with

random, correlated, Gaussian noise with zero mean

(e.g., Barker 2005; Torn et al. 2006) drawn from the

default ‘‘cv3’’ background error covariances (BECs)

provided by the WRF Model’s DA system (WRFDA;

Barker et al. 2012), which were produced with the

‘‘NMC method’’ (Parrish and Derber 1992) based on

differences between 48- and 24-h forecasts from a

legacy ;100-km configuration of the GFS model.

Following Schwartz et al. (2015b), LBC perturbation

magnitudes linearly increased throughout the fore-

casts to promote spread. Identical LBC sets were used

for all CAEs.

b. IC generation and experimental design

Five sets of 10-member, 48-h CAE forecasts were

produced over May 2015, which was the wettest month

ever recorded over the CONUS (e.g., Blunden and

Arndt 2016) and featured a broad precipitation maxi-

mum over the central CONUS (Fig. 1b). The CAEs

were identical except for their ICs, which are now

described.

1) CONTINUOUSLY CYCLING ENKF DA

Two CAEs had ICPs derived from an experimen-

tal continuously cycling ensemble adjustment Kalman

filter (Anderson 2001, 2003; Anderson and Collins 2007), a

FIG. 1. (a) Computational domain. The horizontal grid spacing was 15 km in the outer domain (415 3 325

points) and 3 km in the nest (15813 986 points). Objective verification only occurred over the red shaded region

of the 3-km domain (CONUS east of 1058W). Blue dots denote locations of rawinsonde observations used for

verification. (b) Total accumulated Stage IV (ST4) precipitation (mm) between 0000 UTC 1May and 0000 UTC

2 Jun 2015 over the verification region. This accumulation period encompassed all possible valid times of the

model forecasts.
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type of EnKF, implemented in the Data Assimilation

Research Tested (DART) software (Anderson et al.

2009). The EnKF DA system had 80 ensemble mem-

bers and produced analyses solely on the 15-km do-

main (Fig. 1a).

Similar to Schwartz et al. (2015a), an initial 15-km en-

semble was created by adding random noise drawn from

the WRFDA-provided BECs to the 0.258 0000 UTC

26 April 2015 GFS analysis; this randomly generated

ensemble served as the prior (before assimilation) en-

semble for the first EnKF analysis. Then, the 0000 UTC

26 April 2015 posterior (after assimilation) ensemble

initialized a 6-h, 80-member ensemble forecast that be-

came the prior ensemble for the second EnKF analysis at

0600 UTC 26 April 2015, and this analysis–forecast cycle

with a 6-h period continued until 0000UTC 31May 2015.

Model configurations and LBC perturbation strategies

during the 6-h forecast steps were identical to those de-

scribed in section 2a, except forecasts were not produced

on the 3-km grid. Soil states evolved freely and inde-

pendently for each member during the entire cycling

period, and the first 5 days of cycling were considered

spinup and discarded.

The EnKF assimilated conventional observations as

described by Schwartz et al. (2015b), with the addition of

global positioning system radio occultation refractivity

observations. Observation errors, preprocessing, and

quality control were also detailed by Schwartz et al.

(2015b) and included an ‘‘outlier check’’ to reject ob-

servations far from the prior ensemble mean, inflating

errors of observations near lateral boundaries, rejecting

surface observations with mismatched modeled and

observed terrain heights, and superobbing aircraft and

satellite wind observations.

Specific DA settings were mostly similar to those

employed by NCAR during their real-time CAE project

(Schwartz et al. 2015b, 2019) and summarized in Table 2.

Compared to NCAR’s real-time EnKF analyses pro-

duced in May 2015 (Schwartz et al. 2015b), the biggest

differences involved ensemble size and covariance

inflation. Specifically, the 80 members and posterior

relaxation-to-prior-spread (RTPS) inflation (Whitaker

and Hamill 2012) differed from the real-time analyses,

which had 50 members and used prior adaptive inflation

(e.g., Anderson 2009). The switch to RTPS inflation was

based on systematic experimentation finding little

precipitation forecast sensitivity to inflation method,

and because RTPS inflation is simpler, we chose it for

this work. Ultimately, the EnKF configuration herein

was well tuned in a spread–skill sense (Houtekamer

et al. 2005) and initialized significantly better precip-

itation forecasts than the real-time EnKF analyses

(not shown), likely due to the larger ensemble size,

which benefitsEnKFs (e.g., Zhang et al. 2013;Houtekamer

et al. 2014).

For each 0000 UTC EnKF analysis between 1 and

31 May 2015 (inclusive), the first 10 15-km analysis

members (i.e., members 1–10) initialized 48-h forecasts

on the nested grid (Fig. 1a), where 3-km ICs were

downscaled from the 15-km analyses that lacked storm-

scale structures. Because the EnKF can be conceived as

separately updating a mean and perturbations about the

mean, our EnKF-based ICPs were centered about 80-

member ensemble mean EnKF analyses (‘‘EnKFEnKF’’;

Table 3). On average, each EnKF member was equally

likely to be closest to ‘‘truth’’, so choosing the first 10

members to initialize 48-h forecasts was analogous to

randomly picking 10 members from full 80-member

analysis ensembles (e.g., Schwartz et al. 2014, 2019),

and 10-member CAEs can provide skillful and valu-

able forecasts (e.g., Clark et al. 2011, 2018; Schwartz

et al. 2014).

In addition, between 1 and 31 May 2015 (inclusive),

0000 UTC perturbations of zonal and meridional

wind, potential temperature, water vapor mixing ra-

tio, and perturbation geopotential and dry surface

pressure (U, V, u, qy, f, and m, respectively) from

analysis members 1–10 were added to corresponding

0000 UTC 0.258GFS analyses to create another set of

ICs that initialized 48-h forecasts on the nested grid

(‘‘GFSEnKF’’; Table 3). These ICs had identical U, V,

u, qy, f, and m perturbations as EnKFEnKF but were

centered on GFS analyses, rather than EnKF mean

analyses (Table 3), providing insight about sensitivity

TABLE 1. Physical parameterizations for all WRF Model forecasts. Cumulus parameterization was only used on the 15-km domain.

Physical parameterization WRF Model option References

Microphysics Thompson Thompson et al. (2008)

Longwave and shortwave radiation Rapid Radiative Transfer Model for

Global Climate Models (RRTMG)

with ozone and aerosol climatologies

Mlawer et al. (1997), Iacono et al. (2008),

and Tegen et al. (1997)

Planetary boundary layer Mellor–Yamada–Janjić (MYJ) Mellor and Yamada (1982) and Janjić

(1994, 2002)

Land surface model Noah Chen and Dudhia (2001)

Cumulus parameterization Tiedtke (15-km domain only) Tiedtke (1989) and Zhang et al. (2011)
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to IC center and suitability of large-domain regional

continuously cycling EnKFs to initialize CAE fore-

casts. Compared to the EnKF analyses, GFS analyses

had coarser resolution but assimilated many more

observations, including satellite radiances, and reflect a

well-tuned, operational deterministic forecast system.

Moreover, standardWRFModel preprocessing discards

GFS hydrometeor analyses, such that CAEs with GFS

initial centers started with no (zero value) hydrome-

teors, contrasting those CAEs with EnKF mean initial

centers (Table 3).

2) RANDOM ICPS

Performing limited-area EnKF DA can be expen-

sive, so other cheaper, pragmatic methods of pro-

ducing CAE ICPs were also explored. Thus, two

additional sets of 10-member 48-h forecasts on the

nested grid (Fig. 1a) were initialized by taking random

draws ofU,V, u, qy,f, andm from theWRFDA-provided

BECs and adding them to both 0000 UTC 15-km

EnKF mean (‘‘EnKFRAND’’) and 0.258 GFS analyses

(‘‘GFSRAND’’) between 1 and 31 May 2015 (inclusive;

Table 3). The random patterns differed for each ini-

tialization, but, for a particular initialization and en-

semble member, identical random perturbations were

added to both EnKF mean and GFS analyses (i.e.,

member 1 of EnKFRAND and GFSRAND had identical

perturbations).

Length scales and variances of random perturbations

can be tuned when drawing from BECs, providing

many possibilities for specifying initial correlated ran-

dom noise. However, we only used one set of tuning

parameters where the length scales were empirically

reduced by ;85% from those within the WRFDA-

provided BECs, which was necessary because of our

much finer grid spacing compared to the ;100-km

statistics contained in the BECs. Variances were also

reduced relative to those in the WRFDA-provided

TABLE 3. Description of the various CAEs in terms of their initial centers, IC perturbation methods, and initial hydrometeors.

Ensemble name IC center IC perturbations Initial hydrometeors?

EnKFEnKF EnKF mean analyses EnKF DA Yes, with spread

EnKFRAND EnKF mean analyses Correlated random noise Yes, but no spread; hydrometeor values equal

to the ensemble mean mixing ratios

GFSEnKF GFS analyses EnKF DA No

GFSRAND GFS analyses Correlated random noise No

GFSSREF GFS analyses 3-h SREF forecasts No

TABLE 2. Configuration details of the DART-based EnKF DA system.

Parameter Setting References

Ensemble size 80 members

Filter type Ensemble adjustment Kalman

filter (EAKF)

Anderson (2001, 2003) and Anderson and

Collins (2007)

Updated WRF Model variables Zonal and meridional wind components;

perturbation geopotential height,

potential temperature, and dry surface

pressure; water vapor mixing ratio;

cloud water, cloud ice, rain, snow, and

graupel mixing ratios; rain and cloud ice

number concentrations; diabatic

heating

Covariance localization function Gaspari–Cohn Eq. (4.10) of Gaspari and Cohn (1999)

Horizontal localization full-width 1280 km

Vertical localization full-width 1.0 scale height, except 2.0 scale heights

for surface pressure observations

Adaptive localization threshold 2000 observations Bishop and Hodyss (2009a,b) and

Schwartz et al. (2015b)

Covariance inflation method Posterior relaxation-to-prior-

spread (RTPS)

Whitaker and Hamill (2012)

Inflation factor 1.12 Whitaker and Hamill (2012), Schwartz

and Liu (2014), and Schwartz (2016)

Sampling error correction True Anderson (2012)
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BECs in attempt to roughly approximate spread of

the other initial ensembles. Ultimately, our randomly

produced ICPs had mesoscale structures and contrasted

RB16, who used a similar method to produce random

CAEICPs but with convective-scale structures.Although

subsequent CAE forecasts may be sensitive to length

scale and variance of initial random noise, examining

this sensitivity was beyond the scope of this work, and

the primary purpose of constructing random ICPs was

to assess whether they yielded comparable forecast

quality as flow-dependent EnKF ICPs, but with sub-

stantially lower costs, by examining relative perfor-

mances of CAEs with the same initial center but

different ICPs (e.g., EnKFRAND versus EnKFEnKF and

GFSRAND versus GFSEnKF; Table 3).

3) SREF ICPS

An additional IC set was produced by adding per-

turbations of U, V, u, qy, f, and m derived from

2100 UTC–initialized 3-h forecasts of NCEP’s Short-

Range Ensemble Forecast (SREF; Du et al. 2014) sys-

tem to 0000 UTC 0.258 GFS analyses (‘‘GFSSREF’’;

Table 3); these ICs then initialized 48-h forecasts on the

nested grid between 1 and 31 May 2015 (inclusive). This

inexpensive method was very similar to that used by the

Center for Analysis and Prediction of Storms to produce

CAE ICPs for many years (e.g., Xue et al. 2007; Kong

et al. 2008, 2009; Gallo et al. 2017). Like EnKF per-

turbations, SREF perturbations were flow-dependent,

and although the SREF system had 16-km horizontal

grid spacing, data available to us had been coarsened

to 32 km.

During the experimental period (May 2015) the

SREF contained 21 members with diversity provided

by varied dynamic cores, physics, and ICs (Du et al.

2014).2 However, we only needed perturbations from

10 members, which were chosen as the 8 SREF

members used to initialize the National Severe Storms

Laboratory’s experimental CAE (Clark 2017) plus 2

additional members based on the Advanced Research

WRF dynamic core (the ‘‘p3’’ and ‘‘n3’’ SREF mem-

bers). Contrasting the single-physics, single-dynamics

EnKF ICPs, these 10 SREF-based ICPs collectively

reflected three dynamic cores, each associated with its

own unique IC generation method, and, moreover,

some physics schemes varied across SREF members

with a common core (Du et al. 2014). Thus, below

we refer to SREF ICPs as ‘‘multimodel ICPs,’’ with

the understanding that differences between GFSSREF

members cannot be fully attributed to dynamic core,

physics, or initialization method encapsulated and

entangled within their ICPs.

3. ICP characteristics and spread growth

a. Initial spread characteristics

Mean 700-hPa zonal wind spread over all 31

0000 UTC initial 15-km ensembles highlighted differ-

ences between the various ICPs. Specifically, EnKF and

SREF ICPs were flow dependent (Figs. 2a,b), with rel-

atively large spread associated with stronger mean

height gradients that portend uncertainty, such as over

eastern Canada and the central CONUS, and compar-

atively small spread associated with weaker height gra-

dients over the southeast CONUS and West Coast.

Conversely, random ICPs were not flow dependent and

yielded nearly uniformmean spread reflecting the tuned

BECs (Fig. 2c).

Consistent with Figs. 2a and 2b, EnKF- and SREF-

based initial ensembles had comparable spreads for

wind (Figs. 3a,b), while SREF-based initial ensembles

had larger spread thanEnKF-based initial ensembles for

temperature and moisture below 250hPa (Figs. 3c,d);

these larger SREF spreads for thermodynamic variables

were possibly manifestations of diverse precipitation

patterns produced by the multiple models in the un-

constrained 3-h SREF forecasts leveraged to obtain

ICPs. Except for jet stream level, randomly produced

initial ensembles had broadly comparable spreads as

those with SREF and EnKF perturbations for wind but

with smoother vertical structures (Figs. 3a,b). However,

random ICPs had more midtropospheric temperature

and low-level moisture spread than the other ICPs

(Figs. 3c,d).

b. Spread evolution

1) SPREAD AND ERROR AT RAWINSONDE

LOCATIONS

Ensemble mean RMSEs with respect to rawinsonde

observations and standard deviations at rawinsonde

locations were computed to assess spread and error

growth. The ensembles with EnKF ICPs (EnKFEnKF

and GFSEnKF; Table 3) had similar spreads throughout

the forecast (Fig. 4), but the CAE initially centered

about EnKF mean analyses (EnKFEnKF; gray curves)

had smaller RMSEs than the CAE initially centered

about GFS analyses (GFSEnKF; blue curves) at the

initial time, indicating the EnKF (section 2b) fit

rawinsonde observations more closely than GFS an-

alyses. However, EnKFEnKF ensemble mean RMSEs

grew quickly and were statistically significantly worse2 The SREF configuration has since changed (e.g., Du et al. 2015).

2650 MONTHLY WEATHER REV IEW VOLUME 148

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/30/24 02:40 PM UTC



than those fromGFSEnKF after initialization, indicating

forecast sensitivity to initial center and suggesting GFS

analyses were overall better than EnKFmean analyses.

The three CAEs with GFS initial centers (GFSEnKF,

GFSRAND, GFSSREF; Table 3) typically had similar

RMSEs but different spreads (Fig. 4), with initial

spreads generally aligned with Figs. 3a–c. In particular,

except for 500- and 300-hPa wind, EnKF ICPs had the

smallest initial spread at rawinsonde locations due to

the restorative effect of assimilating those very ob-

servations, and GFSEnKF spread was smaller than

GFSRAND and GFSSREF spread from 12 to 48 h.

While GFSEnKF and GFSSREF spread sometimes

grew more than GFSRAND spread over the entire 48-h

forecast, over the first 12 h, GFSSREF spread usually

grew faster than GFSEnKF spread andGFSRAND spread

growth rates were typically highest (Fig. 4). Although

GFSRAND initial spread was often relatively large, even

when GFSRAND initial spread was comparable to or

smaller than that of the other ensembles, rapid spread

growth still occurred over the first 12 h (Figs. 4a,b,f,g,j),

suggesting GFSRAND forecast spread was not simply

modulated by its initial spread.

2) PERTURBATION POWER SPECTRA

To further understand spread growth characteristics

over the first 12 h, perturbation power spectra were

computed using the discrete Fourier transform after

applying a Hanning window (e.g., Harris 1978) to en-

force periodicity. Random 2-m temperature and 10-m

wind ICPs had less power than SREF and EnKF ICPs

for scales ,500 and 250 km, respectively (Figs. 5a,f),

reflecting the specified length scales used to construct

random noise. However, random ICPs led to rapid error

growth over the first hour (Figs. 5b,g), with larger

growth rates than EnKF and SREF ICPs at small scales,

suggesting rapid GFSRAND spread increases over the

first 12 h (e.g., Figs. 4a,b,f–j) were driven by small-scale

perturbation growth ultimately spurred by downscale

propagation of random mesoscale errors (e.g., Durran

andGingrich 2014). After the first hour, GFSRAND error

growth rates were much slower (Figs. 5c–e,h–j), but by

12 h, at all scales GFSRAND had the most perturbation

energy and GFSEnKF the least (Figs. 5e,j), consistent

with greater low-level GFSRAND 12-h forecast spread

compared to GFSEnKF (Figs. 4a,f).

Overall, these spectra illustrate rapid GFSRAND error

growth was insensitive to ICP variance magnitude;

GFSRAND surface temperature spread was relatively

small (Fig. 3c) while its surface wind spread was rela-

tively large (Figs. 3a,b), yet rapid GFSRAND error

growth occurred over the first hour for both variables.

Similar evolutions were evident for other vertical levels,

and after 12 h, spectra from all three ensembles gradu-

ally converged as common LBCs exerted their influence

(not shown).

3) PRECIPITATION SPREAD

Precipitation development and spread over the first

18 h was sensitive to initial spread characteristics. Most

notably, precipitation variances (about each ensem-

ble’s mean) were largest in the two CAEs with random

ICPs, with rapid spread increases over the first 6 h

(Fig. 6a) consistent with fast low-level error growth

(Figs. 4a,b,f,g, 5). Comparatively, precipitation vari-

ances were less sensitive to IC center, although the

CAEs initially centered about GFS analyses had less

spread than those initially centered about EnKF mean

FIG. 2. Average standard deviation of 700-hPa zonal wind (m s21) over all 10-member, 15-km 0000UTC initial ensembles between 1 and

31 May 2015 (inclusive) constructed with (a) EnKF, (b) SREF, and (c) random perturbations. Mean 700-hPa height (m; contoured every

20m) over all 0000UTCGlobal Forecast System (GFS) analyses between 1 and 31May 2015 (inclusive) is overlaid on each panel, and the

verification region (CONUS east of 1058W) is outlined.
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analyses through 18 h, possibly because initial nonzero

hydrometeor states in the CAEs initially centered

about EnKF mean analyses (Table 3) contributed to

spread growth over the first few hours. GFSSREF had

larger spread than GFSEnKF through 24 h, possibly due

to the multiple models reflected in SREF-based ICPs

and generally consistent with greater GFSSREF initial

spread (Figs. 3c,d, 4) and spread growth over the first

12 h (Fig. 4). Variances computed after a bias correc-

tion (see section 4b) generally behaved similarly as

uncorrected variances over the first 12–18 h but with

smaller differences among the ensembles (Fig. 6b).

After 18 h, precipitation variances were more similar

across all five CAEs than at earlier times. However, of

the three CAEs initially centered about GFS ana-

lyses, GFSSREF had the most spread between 24 and

33 h for raw variances (Fig. 6a), while bias-corrected

variances indicated more spread from random and

SREF ICPs between 24 and 42 h compared to EnKF

ICPs (Fig. 6b).

c. Forecast example

The forecast initialized at 0000 UTC 11 May 2015

nicely illustrates how different ICPs impacted spread

growth. At this time, precipitation was ongoing in the

vicinity of tropical depression Ana over southeastern

North Carolina and along surface boundaries stemming

from a low pressure center over South Dakota, which

FIG. 3. Standard deviation of (a) zonal wind (m s21), (b) meridional wind (m s21), (c) potential temperature

(K), and (d) water vapor mixing ratio (g kg21) as a function of pressure (hPa) over the verification region

(CONUS east of 1058W) averaged over all 10-member, 15-km 0000 UTC initial ensembles between 1 and

31 May 2015 (inclusive).
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was associated with an upper-level trough over the

Rockies and adjacent plains (Figs. 7s–u). Initial 2-m

temperature EnKF and SREF perturbations indicated

flow dependence with enhanced spread around these

features (Figs. 7a,g,s,t), whereas random perturbations

did not reflect these phenomena (Figs. 7m,u).

The 2-m temperature perturbation magnitudes were

initially small (Figs. 7a,g,m,s–u), but by 1h, spread sub-

stantially increased. At 1h, GFSEnKF and GFSSREF spread

primarily reflected the surface low pressure system

and attendant fronts (Figs. 7b,h), while GFSRAND had

not fully developed flow-dependent characteristics

(Fig. 7n). However, after 3 h, all spread patterns re-

flected synoptic-scale features (Figs. 7c,i,o), and by 6–

12h, the three ensembles had comparable structures

near the fronts (Figs. 7d–f,j–l,p–r), with GFSSREF spread

highest along the boundaries. Conversely, in the weak

forcing regime over the southeastern CONUS and Ohio

Valley, GFSRAND possessed much more spread than

GFSSREF and GFSEnKF that peaked from 6 to 9 h

(Figs. 7d,e,j,k,p,q), consistent with Johnson et al. (2014),

who suggested random noise was most likely to promote

spread growth in weak forcing scenarios. It appears that

these random spread patterns were initially organized

on small scales (Figs. 7n,o), consistent with perturbation

spectra indicating rapid small-scale error growth over

the first several hours (Figs. 5a–c,f–h).

Regarding precipitation, GFSEnKF had more spread

than GFSRAND and GFSSREF at 1 h (Figs. 8a,f,k),

and although GFSRAND 2-m temperature structures

were not fully flow-dependent at this time (Fig. 7n),

GFSRAND precipitation spread represented flow-

dependent features (Fig. 8k). This finding was simi-

lar to RB16, who noted flow-dependent precipitation

structures quickly developed in a CAE with storm-

scale random ICPs. By 3 h, precipitation spread had

grown substantially in all CAEs (Figs. 8b,g,l), and by

6–12 h, there were generally more enhanced and wider

areas of nonzero spread in GFSRAND than GFSEnKF in

the vicinity of frontally forced precipitation (Figs. 8c–

e,h–j,m–o). Consistent with Fig. 6a, GFSRAND spread

peaked at 6 h, and while GFSSREF and GFSEnKF had

similar patterns, there was slightly more GFSSREF

spread from 3 to 12 h.

Between 3 and 9 h, GFSRAND precipitation spread

was particularly large over the weakly forced south-

east CONUS and Ohio Valley, whereas GFSEnKF and

GFSSREF had much less spread in similar locales

(Figs. 8b–d,g–i,l–n). Areas of enhanced GFSRAND

precipitation spread often appeared to be preceded

by relatively large GFSRAND 2-m temperature per-

turbations (Figs. 7m–p) and were accompanied by

low probabilities of precipitation over wide areas

where observed precipitation did not occur (not

FIG. 4. (a) 925-, (b) 850-, (c) 700-, (d) 500-, and (e) 300-hPa temperature (K) ensemble mean RMSE compared to rawinsonde obser-

vations (solid lines) and standard deviation at rawinsonde locations (dashed lines) aggregated over all 31 3-km forecasts over the veri-

fication region (CONUS east of 1058W) as a function of forecast hour. See Fig. 1a for locations of rawinsonde observations. Statistical

significance between EnKFEnKF and GFSEnKF RMSEs was determined by a bootstrap resampling technique (see section 4b) and denoted

by open circles placed on the curve with the significantly lower RMSE; for example, a blue circle on a blue line indicates GFSEnKF had a

statistically significantly lower RMSE than EnKFEnKF at the 95% level. (f)–(j) As in (a)–(e), but for wind speed (m s21). Black asterisks

represent observation error standard deviations.
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shown). Thus, at least for this case, random ICPs led

to false alarms in some members in areas with weak

forcing.

d. Summary

The preceding analyses suggest random ICPs pro-

moted rapid short-term error growth, primarily driven

by small-scale perturbations (Fig. 5), while EnKF and

SREF ICPs had comparatively slower error growth

rates. Accordingly, compared to the other ICP strate-

gies, random ICPs generally yielded more spread over

the first 12–18 h (Figs. 4, 6). As the next section shows,

this additional spread from random ICPs was some-

times helpful, yet did not always possess favorable

characteristics.

4. Precipitation verification

Hourly accumulated precipitation forecasts were ob-

jectively compared to NCEP’s Stage IV (ST4) analyses

(Lin and Mitchell 2005) over the CONUS east of 1058W
(Fig. 1a), where ST4 data were most robust (e.g., Nelson

et al. 2016) and considered as ‘‘truth.’’ While some sta-

tistics were computed on native grids, many verification

metrics require a common grid for forecasts and obser-

vations. So, for these metrics, all precipitation forecasts

were interpolated to the ST4 grid (4.763-km horizontal

grid spacing) using a precipitation-conserving budget

interpolation algorithm (e.g., Accadia et al. 2003). We

primarily focused on precipitation because it is an im-

portant sensible weather field and depends on many

physical processes, thus providing an overall summary of

model performance.

Statistics presented in this section are aggregated over

all 31 forecasts.

a. Bias characteristics

1) TOTAL PRECIPITATION

Total precipitation over the verification region (Fig. 1a)

normalized by number of grid points in the verifica-

tion region was determined for each member on na-

tive grids (Fig. 9). To concisely summarize results,

only the mean and range (maximum minus minimum;

lines with circle markers) are shown for all five CAEs

(Fig. 9a), while individual GFSSREF members are

shown in Fig. 9b.

The largest differences between the CAEs oc-

curred over the first 12 h, where the two CAEs with

random ICPs spunup precipitation much faster than

the other CAEs but grossly overshot observed domain-

total precipitation (Fig. 9a). While the CAEs with

EnKF and SREF ICPs had broadly similar mean

spinups, distinct trifurcation of GFSSREF members

occurred based on dynamic core (Fig. 9b), consistent

with Johnson et al. (2011) and indicating how ICPs

FIG. 5. (a)–(e) Average perturbation energy for 2-m temperature (K2) as a function of wavelength (km) computed over all 31 3-km

forecasts and the 3-km domain east of 1058W, excluding 16 and 42 grid points from the eastern and northern/southern boundaries,

respectively, for (a) analyses and (b) 1-, (c) 3-, (d) 6-, and (e) 12-h forecasts. (f)–(j) As in (a)–(e), but for 10-m kinetic energy (m2 s22).

Vertical lines denote 6 times the horizontal grid spacing (3 km), the approximate effective resolution of the forecasts (Skamarock 2004),

and horizontal lines are for reference to help visualize changes across forecast hours. Note that the initial conditions had 15-km horizontal

grid spacing, which is manifested by lack of small-scale power in (a) and (f).
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reflecting multiple models can lead to clustering, which

is undesirable (e.g., Gowan et al. 2018; Schwartz et al.

2019). In general, spinup appeared more sensitive to

ICPs than IC center, even though initial center deter-

mined whether the CAE had initial hydrometeors

(Table 3). This finding suggests ICP characteristics

influence spinup more than initial hydrometeor state

for 0000 UTC–initialized forecasts over the central-

eastern CONUS.

Despite varied spinups, all CAEs generally well-

represented diurnal cycle timing after 18 h, where

GFSEnKF and GFSSREF members with NMM dynamic

core ICPs had domain-total precipitation typically best

matching observations, including the observed peak

around 24 h (Fig. 9). Conversely, the two ensembles

with random ICPs had less mean precipitation than

observations between;24–42 h, while at the maximum

around 24 h EnKFEnKF produced too much precipita-

tion (Fig. 9a). Interestingly, despite overpredicting at

24 h, EnKFEnKF precipitation dramatically decreased

and underpredicted between ;26–42 h, perhaps due to

insufficient upscale convection growth (e.g., Schwartz

et al. 2015b).

GFSSREF clearly had the widest range through-

out the forecast, reflecting its ICPs with multimodel

diversity (Fig. 9a). Additionally, the two CAEs with

random ICPs typically had wider ranges than those

withEnKF ICPs, particularly over the first 12h, essentially a

manifestation of randomness. However, after 12 h,

except for GFSSREF, the four other CAEs had fairly

similar ranges.

2) PRECIPITATION DISTRIBUTIONS

Average areal coverages of 1-h accumulated pre-

cipitation meeting or exceeding selected accumulation

thresholds (e.g., 10.0mmh21) were calculated over the

verification region on native grids to assess precipita-

tion distributions (Fig. 10). The CAEs generally well-

represented diurnal cycle timing after the spinup,

although there were sometimes biases, particularly for

thresholds #1.0mmh21, where all CAEs usually had

mean coverages lower than those observed (Figs. 10a,b).

Areal coverage characteristics for thresholds

$2.5mmh21 (Figs. 10c–f) were broadly consistent with

domain-total precipitation statistics, and GFSSREF mem-

bers again clustered based on dynamic core represented in

the ICPs (not shown). Specifically, the two ensembles with

random ICPs had lower mean coverages than obser-

vations between ;24–42 h for thresholds $2.5mmh21

but clearly overpredicted during the spinup, which

contributed to their excessive total precipitation dur-

ing this period (e.g., Fig. 9a). Before and during the

first observed precipitation peak (18–24h), GFSEnKF

and GFSSREF typically had ensemble mean coverages

closest to observations, while EnKFEnKF overpredicted

for thresholds between 2.5 and 10.0mmh21 (Figs. 10c–e).

FIG. 6. Average ensemble variance (mm2) over the verification region (CONUS east of 1058W) and all 31 3-km

forecasts of 1-h accumulated precipitation as a function of forecast hour computed from (a) raw, native grid data

and (b) bias-corrected precipitation interpolated onto the ST4 grid (see section 4b). Values on the x axis represent

ending forecast hours of 1-h accumulation periods (e.g., an x-axis value of 24 is for 1-h accumulated precipitation

between 23 and 24 h).

JULY 2020 S CHWARTZ ET AL . 2655

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/30/24 02:40 PM UTC



Ensemble ranges of areal coverages (lines with circles in

Fig. 10) also resembled those for domain-total precipi-

tation, with GFSSREF having the widest ranges and the

CAEs with random ICPs possessing relatively large

ranges for the first ;12h.

Probability density functions (PDFs) further revealed

the different spinups engendered by EnKF and random

ICPs (Fig. 11). At 1 h, while finescale structures were

still developing, CAEs with EnKF ICPs had more

heavy precipitation than those with random ICPs, al-

though none of the forecasts could yet reproduce the

observed heavy rainfall frequency (Fig. 11a). However,

between 1 and 3 h, heavy precipitation rapidly devel-

oped in the CAEs with random ICPs (Fig. 11b), with

slower development in the CAEs with EnKF ICPs, and

by 5–7 h, the CAEs with random ICPs produced too

much rainfall .40.0mmh21 while PDFs of the CAEs

with EnKF ICPs gradually aligned with those observed

(Figs. 11c,d).

Collective findings clearly suggested issues when

initializing CAEs with random noise for short-term

precipitation forecasts (Figs. 8–11), possibly due to

gross imbalances in random initial states. Moreover,

our results are consistent with Johnson et al. (2014),

who found initializing CAEs with correlated random

noise led to ‘‘spurious precipitation that formed over

large areas onmany cases’’ at short forecast ranges, and

as Johnson et al. (2014) constructed random ICPs with

smaller length scales than those used here, it appears

using random noise to initialize CAEs may be chal-

lenging regardless of its correlation scale.

b. Ensemble precipitation verification

Areal coverages sometimes indicated biases (Fig. 10),

which can hamper interpretation of verification metrics

designed to quantify spatial errors (e.g., Baldwin and

Kain 2006; Roberts and Lean 2008). Thus, forecasts

were bias corrected before assessing measures of prob-

abilistic forecast quality with a ‘‘probability-matching’’

approach that forced each ensemble member’s distri-

bution to the ST4 distribution by replacing the model

grid point containing the most precipitation within the

verification region with the highest ST4 amount within

the verification region, and so on, thus eliminating bias

FIG. 7. Standard deviation of 2-m temperature (K) at the (a),(g),(m) initial time and for (b),(h),(n) 1-, (c),(i),(o) 3-, (d),(j),(p) 6-,

(e),(k),(q) 9-, and (f),(l),(r) 12-h 3-km forecasts initialized at 0000 UTC 11 May 2015 for (a)–(f) GFSEnKF, (g)–(l) GFSSREF, and (m)–(r)

GFSRAND. (s)–(u)As in (a),(g), and (m), respectively, but with a different color scale tomore easily see structural features, and 10-mwinds

(barbs; kts), sea level pressures (hPa; gray lines), and 500-hPa heights (m;magenta lines) from the 0000UTC 11May 2015GFS analysis are

overlaid.
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(e.g., Ebert 2001; Clark et al. 2009, 2010a, b; Schwartz

et al. 2015a; Loken et al. 2019; Pyle and Brill 2019).

Despite replacing model values with observations, this

method preserves forecast spatial patterns.

After interpolating precipitation forecasts to the

ST4 grid and bias correcting, a ‘‘neighborhood’’ ap-

proach (e.g., Theis et al. 2005; Ebert 2008, 2009) was

employed to derive probabilistic fields suitable for

verification following Schwartz and Sobash (2017).

First, ensemble probabilities (EPs) at a particular grid

point were determined as the fraction of ensemble

members predicting an event at that point, where an

event was defined as precipitation meeting or ex-

ceeding an accumulation threshold (e.g., 5.0mmh21).

Then, ‘‘neighborhood ensemble probabilities’’ (NEPs;

Schwartz et al. 2010; Schwartz and Sobash 2017) were

computed by choosing a neighborhood length scale (r)

to define a spatial neighborhood and averaging EPs over

all grid points in the neighborhood. NEPs are proba-

bilities of event occurrence at a point given a neigh-

borhood length scale (e.g., Schwartz and Sobash 2017)

and aremore appropriate for verifying CAEs than point-

based probabilities (i.e., EPs) because they incorporate

spatial uncertainty and acknowledge that CAEs are in-

herently inaccurate at the grid scale.

NEPs were produced from all CAEs with r between 5

and 150 km, which represented radii of circular neigh-

borhoods. Following Schwartz and Sobash (2017), NEPs

at the ith point were verified against corresponding ob-

servations (i.e., ST4) at the ith point, where the ith ob-

served value could either be binary (i.e., 0 or 1) or

fractional depending on what the metric required; frac-

tional observations (e.g., Roberts and Lean 2008) at the

ith point were obtained by determining the fraction of

observed events within its neighborhood, analogously

to NEPs.

For brevity, results are shown solely for r 5 100 km,

but overall findings were unchanged using different

r. Additionally, a maximum event threshold of 10.0mmh21

was used, as metrics computed at higher thresholds were

noisy due to small sample sizes (e.g., Fig. 10).

Statistical significance testing followed Schwartz

(2019), who examined performance of several ensembles,

and the following text parallels from there. Specifically,

statistical significance was determined with a bootstrap

technique by randomly drawing paired samples (10000

FIG. 8. Standard deviation of 1-h accumulated precipitation (mm) for (a),(f),(k) 1-, (b),(g),(l) 3-, (c),(h),(m) 6-, (d),(i),(n) 9-, and

(e),(j),(o) 12-h 3-km forecasts initialized at 0000 UTC 11May 2015 for (a)–(e) GFSEnKF, (f)–(j) GFSSREF, and (k)–(o) GFSRAND over the

verification region (CONUS east of 1058W). The mean standard deviation (s) over the verification region is annotated above each panel.
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times) of daily statistics from two ensembles over all

forecast cases to calculate resampled distributions of ag-

gregate differences between two ensembles (e.g., Hamill

1999; Wolff et al. 2014). This procedure assumed indi-

vidual forecasts, initialized 24h apart, were independent

(e.g., Hamill 1999). Bounds of 90% bootstrap confidence

intervals (CIs) were obtained from the distribution of

resampled aggregate differences using the bias corrected

and accelerated method (e.g., Gilleland 2010). If bounds

of a 90% bootstrap CI did not encompass zero, using a

one-tailed interpretation, differences between two en-

sembles were statistically significant at the 95% level

or higher.

1) FRACTIONS SKILL SCORES

The fractions skill score [FSS; Roberts and Lean

(2008)] was used to evaluate spatial placement, where

FSS 5 1 means a perfect forecast and FSS 5 0 indi-

cates no skill. For fixed initial centers, CAEs with

flow-dependent ICPs usually had higher FSSs than

those with random ICPs, while differences between

GFSSREF and GFSEnKF FSSs were usually small and

not statistically significant (Fig. 12). These results in-

dicated value of flow-dependent ICPs compared to

random ICPs and minimal benefits of multimodel

ICPs. However, regardless of ICPs, the three CAEs

initially centered on GFS analyses typically had higher

FSSs than the two CAEs initially centered about EnKF

mean analyses, demonstrating GFS analyses were gen-

erally better than EnKF mean analyses and suggesting

initial center is more important than ICPs for achieving

high FSSs.

2) RANK HISTOGRAMS

Rank histograms (e.g., Hamill 2001) based on domain-

total precipitation were constructed as in Schwartz et al.

(2014). Although rank histograms are sensitive to ob-

servation errors (e.g., Hacker et al. 2011), ST4 observa-

tion errors are not well-known and were not included.

The reliability index (RI; Delle Monache et al. 2006) was

used to summarize rank histogram flatness; lower values

are preferable.

Observations fell within the ensemble more regularly

and more optimal values were achieved in most bins

when CAEs had random or SREF ICPs rather than

EnKF ICPs (Fig. 13). GFSSREF and GFSRAND RIs were

fairly similar and much smaller than GFSEnKF RIs

(Figs. 13a,c), and differences between the CAEs were

FIG. 9. (a) Average 1-h accumulated precipitation (mm) per grid point over all 31 3-km forecasts and the veri-

fication region (CONUS east of 1058W), computed on native grids, as a function of forecast hour. These statistics

were computed for all 10 ensemble members, but for most ensembles, only the ensemble mean values (lines) and

ranges (maximumminus minimum; lines with circle markers near the x axis) are shown. The red and gray shadings

represent envelopes of the 10 members comprising EnKFRAND and GFSSREF, respectively, and darker shadings

indicate intersections of their two envelopes. Values on the x axis represent ending forecast hours of 1-h accu-

mulation periods (e.g., an x-axis value of 24 is for 1-h accumulated precipitation between 23 and 24 h). (b) As in (a),

but the curves are for individual members from the GFSSREF ensemble, with colors corresponding to the dynamic

core each SREF member possessed. These different dynamic cores were reflected solely in the ICPs; for the WRF

Model forecasts, all members had common configurations.
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comparatively small after 18 h (cf. Fig. 13a and Fig. 13c

and Fig. 13b and Fig. 13d), reflecting generally con-

verging spread with time (e.g., Figs. 4, 6). Nonetheless,

results at all forecast ranges suggest that enhanced

precipitation spread engendered by random ICPs (e.g.,

Fig. 6) led to better dispersion characteristics than flow-

dependent EnKF ICPs, even though this improved

spread was also a manifestation of spinup issues (e.g.,

Figs. 7–11) and using random ICPs degraded forecast

skill as measured by FSSs (e.g., Fig. 12).

3) ROC AREAS

Ability to discriminate events from climatology was

quantified by area under the relative operating char-

acteristic (ROC) curve (Mason 1982; Mason and

Graham 2002), which was computed using decision

thresholds of 1%, 2%, 3%, 4%, 5%, 10%, 15%, . . . ,

95%, and 100% and a trapezoidal approximation.

ROC area. 0.5 indicates better discriminating ability

than random forecasts.

As with FSSs, all three CAEs initially centered on

GFS analyses usually had higher ROC areas than the

two CAEs initially centered about EnKF mean ana-

lyses (Figs. 14a–d), again suggesting GFS analysis

superiority to EnKF mean analyses and greater im-

portance of initial center than ICPs. Between ;6–

18 h, for fixed initial centers, the CAEs with random

ICPs had statistically significantly higher ROC areas

than those with EnKF ICPs, while before 6 h and after

18 h, EnKF and random ICPs yielded similar ROC

FIG. 10. Fractional areal coverage (%) of 1-h accumulated precipitation meeting or exceeding (a) 0.25, (b) 1.0, (c) 2.5, (d) 5.0, (e) 10.0,

and (f) 20.0mmh21 over the verification region (CONUS east of 1058W), computed on native grids and aggregated over all 31 3-km

forecasts as a function of forecast hour. These statistics were computed for all 10 ensemble members, but for most ensembles, only the

ensemble mean values (lines) and ranges (maximum minus minimum; lines with circle markers near the x axis) are shown. The red and

gray shadings represent envelopes of the 10 members comprising EnKFRAND and GFSSREF, respectively, and darker shadings indicate

intersections of their two envelopes. Values on the x axis represent ending forecast hours of 1-h accumulation periods (e.g., an x-axis value

of 24 is for 1-h accumulated precipitation between 23 and 24 h).
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areas (Figs. 14a–d). These results differed from FSSs

(Fig. 12) that clearly indicated EnKF ICPs were

preferable to random ICPs. Outside the 6–18-h pe-

riod, GFSSREF had the highest ROC areas among the

three CAEs with GFS initial centers that were often

statistically significantly higher than GFSEnKF ROC

areas, suggesting benefits of incorporating multimodel

diversity within CAE ICPs and contrasting the similar

GFSSREF and GFSEnKF FSSs.

Further investigation revealed the relatively poor 6–

18-h GFSEnKF ROC areas compared to GFSRAND and

GFSSREF were primarily due to insufficient contribu-

tions from NEPs , 25%. Specifically, GFSRAND and

GFSSREF were less sharp than GFSEnKF, with higher

coverages of NEPs for r5 100 km between 5% and 25%

and lower coverages of NEPs$ 45% at most thresholds

(Figs. 15a–d). In general, the GFSRAND distribution

differed more from the GFSEnKF distribution than

FIG. 11. Probability density functions (PDFs; %) constructed from all points within the verification region

(CONUS east of 1058W) over all 31 (a) 1-, (b) 3-, (c) 5-, and (d) 7-h 3-km forecasts of 1-h accumulated precipitation

(mm) for member 1 from various ensembles, computed on native grids. The corresponding observed (ST4) PDFs

are also shown. Dashed lines are for reference to help visualize changes across forecast hours.
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FIG. 12. Fractions skill score (FSS) over the verification region (CONUS east of 1058W) with a 100-km neigh-

borhood length scale for the (a) 0.25, (b) 1.0, (c) 5.0, and (d) 10.0mmh21 thresholds aggregated over all 31 3-km

forecasts of 1-h accumulated precipitation as a function of forecast hour. Values on the x axis represent ending

forecast hours of 1-h accumulation periods (e.g., an x-axis value of 24 is for 1-h accumulated precipitation between

23 and 24 h). Note that the y-axis scales are different in each panel. Symbols along the top axis denote forecast hours

when differences between two ensembles were statistically significant at the 95% level. As indicated in the legend,

in order from top to bottom, the rows indicate differences between GFSEnKF and EnKFEnKF, EnKFEnKF and

EnKFRAND, GFSEnKF and GFSRAND, GFSSREF and GFSRAND, and GFSEnKF and GFSSREF, with symbols corre-

sponding to those in the legend that denote which ensemble had statistically significantly higher FSSs. For example,

in the top row, blue symbols indicateGFSEnKF had statistically significantly higher FSSs than EnKFEnKF, while gray

symbols indicate EnKFEnKF had statistically significantly higher FSSs than GFSEnKF. Similarly, in the bottom row,

blue symbols indicate GFSEnKF had statistically significantly higher FSSs than GFSSREF, while black symbols in-

dicateGFSSREF had statistically significantly higher FSSs thanGFSEnKF. Absence of a symbol means the difference

was not statistically significant at the 95% level.
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GFSSREF; for example, within the 5%–25% bin for the

0.25 and 1.0mmh21 thresholds, GFSRAND had ;50%

more NEPs than GFSEnKF while the difference be-

tween GFSSREF and GFSEnKF was smaller (;15%;

Figs. 15a,b). These enhanced low-probability cover-

ages in GFSSREF and GFSRAND reflected their greater

spreads relative to GFSEnKF between 6 and 18 h (Fig. 6)

that were beneficial (e.g., Fig. 13a) and enabled better

detection of low-probability events while not apprecia-

bly increasing false alarm rates, boosting ROC areas.

Between 18 and 36 h, even though GFSRAND again

had more low probabilities than GFSEnKF (Figs. 15e–

h), differences between GFSRAND and GFSEnKF cov-

erages of 5%–25% NEPs were smaller than between

6 and 18 h. Although greater GFSRAND spread was

beneficial from a dispersion perspective (e.g., Fig. 13c),

GFSRAND spatial placement was significantly poorer

than GFSEnKF (Fig. 12), counteracting benefits from

enhanced spread and likely leading to comparable

GFSRAND and GFSEnKF ROC areas outside of 6–18 h

(Figs. 14a–d). Conversely, differences between GFSEnKF

and GFSSREF NEP distributions were similar across both

forecast intervals (Fig. 15), and asGFSSREF andGFSEnKF

FSSs were similar, the combination of good GFSSREF

placement and more GFSSREF spread translated into

higher GFSSREF ROC areas for most of the forecast rel-

ative to GFSEnKF.

Overall, ROC areas indicated more benefits of using

both random andmultimodel ICPs than FSSs. However,

higher ROC areas from these techniques appear related

solely to enhanced spread and greater low probability

coverages. In fact, when ROC areas were computed

with decision thresholds of 0%, 25%, 30%, 35%, . . .,

95%, and 100% to explicitly exclude contributions

from NEPs , 25%, although ROC areas plummeted,

CAEs with EnKF ICPs had higher ROC areas than

FIG. 13. Rank histograms containing all 31 3-km (a),(b) 1–18- and (c),(d) 18–36-h forecasts of non-bias-corrected

domain-total 1-h accumulated precipitation on the ST4 grid over the verification region (CONUSeast of 1058W) for

ensembles initially centered about (a),(c) GFS and (b),(d) EnKF mean analyses. Horizontal lines are optimal

values, and the reliability index (RI; DelleMonache et al. 2006) is annotated for each ensemble in the legend; lower

values are better and indicate flatter rank histograms.
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CAEs with the same initial center but random ICPs,

and GFSEnKF had comparable or higher ROC areas

than GFSSREF (Figs. 14e–h). These truncated ROC

areas provided similar conclusions as FSSs regarding

benefits of flow-dependent EnKF ICPs, and it appears

that employing multimodel ICPs may be unnecessary

for users unconcerned with low-probability decision

thresholds.

4) ATTRIBUTES STATISTICS

Attributes diagrams (Wilks 2011) were constructed

with forecast probability bins of 0%–5%, 5%–15%,

15%–25%, . . . , 85%–95%, and 95%–100% (Fig. 16) to

assess calibration, with curves falling on the diagonal

indicating perfect reliability. Over the first 18 h, for fixed

IC centers, the CAEs with random and SREF ICPs were

more reliable than those with EnKF ICPs for most

thresholds and probability bins, and GFSRAND was

sometimes more reliable than GFSSREF (Figs. 16a–d).

The better GFSRAND and GFSSREF reliabilities com-

pared to GFSEnKF were aided by less sharp distributions

with fewer high-probability forecasts (e.g., Figs. 15a–d)

that diminished overconfidence, again reflecting their

greater spreads. Nonetheless, relatively poor GFSRAND

FSSs suggest many low probabilities did not correspond

well with observations. Initial center again mattered, as

for fixed ICPs, the CAEs with GFS initial centers typi-

cally had better reliabilities than those with EnKF mean

initial centers.

Similar conclusions generally held at later times (18–

36 h; Figs. 16e–h), althoughGFSSREF andGFSRAND had

closer reliabilities than at earlier times. Over both pe-

riods, most ensembles were overconfident and all CAEs

had little or no skill with respect to forecasts of clima-

tology at the 10.0mmh21 threshold, indicating chal-

lenges persist for making reliable predictions of highly

localized events like heavy rainfall.

5. Summary and conclusions

Five sets of 48-h, 10-member, 3-km CAE forecasts

were initialized at 0000 UTC each day in May 2015 over

the CONUS with various configurations designed to

isolate forecast sensitivity to ICPs and central initial

state. Sensitivity to ICs extended throughout the 48-h

forecasts, contrasting many European studies showing

FIG. 14. Area under the ROC curve over the verification region (CONUS east of 1058W) with a 100-km neighborhood length scale for

the (a),(e) 0.25, (b),(f) 1.0, (c),(g) 5.0, and (d),(h) 10.0mmh21 thresholds aggregated over all 31 3-km forecasts of 1-h accumulated

precipitation as a function of forecast hour computed with (a)–(d) the full range of decision thresholds and (e)–(h) a truncated set of

decision thresholds with a lowest nonzero threshold of 25% (see text). Values on the x axis represent ending forecast hours of 1-h

accumulation periods (e.g., an x-axis value of 24 is for 1-h accumulated precipitation between 23 and 24 h). Note that the y-axis scales are

different in each panel. Statistical significance is denoted along the top axis as in Fig. 12.
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IC impacts through only 6–12h (e.g., Hohenegger et al.

2008; Vié et al. 2011; Kühnlein et al. 2014; RB16); this

disparity is probably due to the much bigger computa-

tional domain used here, and our findings suggest en-

hanced importance of ICs for large domains.

Specifically, using random mesoscale ICPs yielded

undesirable spinup characteristics and relatively poor

FSSs compared to employing flow-dependent ICPs

provided by both single-physics, single-dynamics 15-

km limited-area continuously cycling EnKF analyses

and 3-h multimodel SREF forecasts. However, these

deleterious characteristics from random ICPs increased

spread, leading to less overconfidence and broader low-

probability coverages that improved ROC areas, rank

histogram flatness, and attributes statistics compared to

EnKF—and sometimes SREF—ICPs. Therefore, it ap-

pears random ICPs engendered some beneficial prop-

erties despite lack of flow dependence, but substantial

work is needed to further understand and remedy det-

rimental impacts of random noise on model spinup.

Compared to EnKF ICPs, SREF ICPs yielded com-

parable FSSs but improved performance for spread-

sensitive metrics. Yet, individual members of the

SREF-initialized CAE had different climatologies

that undesirably clustered by dynamic core reflected

in its ICPs. Thus, although SREF-based and random

ICPs often provided improvements over EnKF ICPs,

given the challenges associated with multimodel and

random ICPs, collective results suggest obtaining ‘‘good

spread’’ in CAEs remains elusive, and within future

operational CAEs like those being developed under

NOAA’s UFS, it may be more fruitful to attempt to

recover the helpful, spread-inducing aspects from ran-

dom and multimodel ICPs by instead using stochastic

physics schemes in association with single-physics, sin-

gle-dynamics, flow-dependent ICPs (e.g., Bouttier et al.

2012; Romine et al. 2014; Jankov et al. 2019).

Additionally, our findings stress the importance of

CAE initial center, which wasmore important than ICPs

for achieving high ROC areas and FSSs. Moreover,

CAEs initially centered about operational GFS analyses

were unequivocally superior to those initially centered

on our experimental EnKFmean analyses. These results

strongly suggest relative superiority of GFS analyses and

lend credence to the ‘‘partial cycling’’ strategy currently

employed by NOAA’s limited-area DA systems over

the CONUS that periodically discards cycled states and

replaces them with fields from a global model (e.g.,

Benjamin et al. 2016; Wu et al. 2017).

Despite our seemingly discouraging EnKF-based re-

sults, continuously cycling EnKFs over large regional

domains can potentially be enhanced by decreasing the

cycling period (e.g., using 1-h cycles), assimilating more

observations, and likely most importantly, improving the

limited-area NWP model (e.g., Romine et al. 2013). In

addition, our results documenting very slow perturbation

FIG. 15. Sharpness diagrams depicting how often bias-corrected NEPs of 1-h accumulated precipitation computed with r5 100 km fell

into various probabilistic bins over the verification region (CONUS east of 1058W) and all 31 (a)–(d) 6–18- and (e)–(h) 18–36-h forecasts

for event thresholds of (a),(e) 0.25, (b),(f) 1.0, (c),(g) 5.0, and (d),(h) 10.0mmh21. Scale along the right axis is for ratios of number of

occurrences between GFSRAND to GFSEnKF (solid) and GFSSREF to GFSEnKF (dashed), with a horizontal line at 1.
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growth over the first 12 h from EnKF ICPs compared

to random ICPs suggest efforts toward understanding

and accelerating these slow growths should be un-

dertaken to improve short-term forecast spread from

EnKF ICPs. While increasing EnKF resolution may

also help, especially for nowcasting purposes, finer

EnKF resolution is likely not a panacea, and it is en-

tirely possible that continuously cycling limited-area

EnKFs, despite their many attractive properties, may

not currently be optimal for initializing large-domain

regional CAEs, particularly for next-day forecasts

that are less impacted by spinup. Nonetheless, ongo-

ing research at NCAR is attempting to improve

limited-area NWP models (e.g., Wong et al. 2020),

with hopes that these efforts will translate into better

continuously cycling DA systems over large regional

domains.
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